Самосопряжённое дифференциальное уравнение - definição. O que é Самосопряжённое дифференциальное уравнение. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Самосопряжённое дифференциальное уравнение - definição

Интегро-дифференциальное уравнение

Самосопряжённое дифференциальное уравнение      

уравнение, имеющее те же решения, что и сопряжённое с ним (см. Сопряжённые дифференциальные уравнения). Обыкновенное С. д. у. чётного порядка 2m имеет вид

,

а нечётного порядка 2m - 1 имеет вид

,

где Ai - функции от x. Понятие С. д. у. играет большую роль в теории дифференциальных уравнений, обыкновенных и с частными производными. При некоторых краевых условиях левая часть С. д. у. определяет самосопряжённый дифференциальный оператор. Наиболее важны в приложениях С. д. у. второго порядка.

ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ         
уравнение, содержащее неизвестную функцию под знаком интеграла и под знаком производной (или дифференциала).
Интегро-дифференциальные уравнения         

уравнения, содержащие неизвестную функцию под знаком интеграла и под знаком производной. Например, уравнение, полученное итальянским математиком В. Вольтерра в задаче о крутильных колебаниях:

Иногда И.-д. у. можно свести к интегральным уравнениям (См. Интегральные уравнения) или дифференциальным уравнениям (См. Дифференциальные уравнения). Решение И.-д. у. можно искать по методу последовательных приближений.

Wikipédia

Интегро-дифференциальные уравнения

Интегро-дифференциальные уравнения — класс уравнений, в которых неизвестная функция содержится как под знаком интеграла, так и под знаком дифференциала или производной.

L n [ φ ( x ) ] λ a b K ( x , y , P m [ φ ( y ) ] ) d y = f ( x ) {\displaystyle {L}_{n}[\varphi (x)]-\lambda \int _{a}^{b}K(x,y,{P}_{m}[\varphi (y)])dy=f(x)}

где

L n [ φ ( x ) ] = d n φ ( x ) d x n + a 1 ( x ) d n 1 φ ( x ) d x n 1 + . . . + a n ( x ) φ ( x ) {\displaystyle {L}_{n}[\varphi (x)]={\frac {{d}^{n}\varphi (x)}{{dx}^{n}}}+{a}_{1}(x){\frac {{d}^{n-1}\varphi (x)}{{dx}^{n-1}}}+...+{a}_{n}(x)\varphi (x)} называется внешним дифференциальным оператором, а
P m [ φ ( y ) ] = d m φ ( y ) d y m + b 1 ( y ) d m 1 φ ( y ) d y m 1 + . . . + b m ( y ) φ ( y ) {\displaystyle {P}_{m}[\varphi (y)]={\frac {{d}^{m}\varphi (y)}{{dy}^{m}}}+{b}_{1}(y){\frac {{d}^{m-1}\varphi (y)}{{dy}^{m-1}}}+...+{b}_{m}(y)\varphi (y)}  — внутренним дифференциальным оператором
K ( x , y , P m [ φ ( y ) ] ) {\displaystyle K(x,y,{P}_{m}[\varphi (y)])}  — ядро интегро-дифференциального уравнения

Некоторые интегро-дифференциальные уравнения можно свести к дифференциальным уравнениям в банаховом пространстве, однако существуют эволюционные интегро-дифференциальные уравнения (встречающиеся в теории упругости и моделях биологических процессов), содержащие интегрирование по времени, для которых это сделать сложно.